Mirror Symmetry For Zeta Functions

نویسنده

  • Daqing Wan
چکیده

Institute of Mathematics, Chinese Academy of Sciences, Beijing, P.R. China Department of Mathematics, University of California, Irvine, CA 92697-3875 [email protected] Abstract In this paper, we study the relation between the zeta function of a Calabi-Yau hypersurface and the zeta function of its mirror. Two types of arithmetic relations are discovered. This motivates us to formulate two general arithmetic mirror conjectures for the zeta functions of a mirror pair of Calabi-Yau manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Character on the Quasi-Symmetric Functions coming from Multiple Zeta Values

We define a homomorphism ζ from the algebra of quasi-symmetric functions to the reals which involves the Euler constant and multiple zeta values. Besides advancing the study of multiple zeta values, the homomorphism ζ appears in connection with two Hirzebruch genera of almost complex manifolds: the Γ-genus (related to mirror symmetry) and the Γ̂-genus (related to an S1-equivariant Euler class). ...

متن کامل

An Explicit Factorisation of the Zeta Functions of Dwork Hypersurfaces

Let Fq be a finite field with q elements, ψ a non-zero element of Fq, and n an integer ≥ 3 prime to q. The aim of this article is to show that the zeta function of the projective variety over Fq defined by Xψ : x n 1 + · · · + x n n − nψx1 . . . xn = 0 has, when n is prime and Xψ is non singular (i.e. when ψ 6= 1), an explicit decomposition in factors coming from affine varieties of odd dimensi...

متن کامل

Equalities, congruences, and quotients of zeta functions in Arithmetic Mirror Symmetry

The purpose of this note is twofold. First, we demonstrate that under certain conditions we may extend the Arithmetic Mirror Theorem of [2, Theorems 1.1 and 6.1]. Second, we apply this extension to the study of the quotient of the zeta functions of Xλ and Yλ. With λ ∈ C we may define a family of complex projective hypersurfaces Xλ in P n C by x 1 + · · ·+ x n+1 n+1 + λx1 · · ·xn+1 = 0. With the...

متن کامل

Stringy Zeta Functions for Q–gorenstein Varieties

The stringy Euler number and stringy E–function are interesting invariants of log terminal singularities, introduced by Batyrev. He used them to formulate a topological mirror symmetry test for pairs of certain Calabi–Yau varieties, and to show a version of the McKay correspondence. It is a natural question whether one can extend these invariants beyond the log terminal case. Assuming the Minim...

متن کامل

Mirror Symmetry, Kobayashi's Duality, and Saito's Duality

M. Kobayashi introduced a notion of duality of weight systems. We tone this notion slightly down to a notion called coupling. We show that coupling induces a relation between the reduced zeta functions of the monodromy operators of the corresponding singularities generalizing an observation of K. Saito concerning Arnold's strange duality. We show that the weight systems of the mirror symmetric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005